skip to main content


Search for: All records

Creators/Authors contains: "Groysman, Stanislav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A series of twelve second coordination sphere (SCS) functionalized manganese tricarbonyl bipyridyl complexes are investigated for their electrocatalytic CO2reduction properties in acetonitrile. A qualitative and quantitative assessment of the SCS functional groups is discussed with respect to the catalysts’ thermodynamic and kinetic efficiencies, and their product selectivities. In probing a broad scope of functional groups, it is clear that only the aprotic ortho‐arylester SCS is capable of promoting the highly desired low‐overpotential proton‐transfer electron‐transfer (PT‐ET) pathway for selective CO production. The ortho‐phenolic analogues cause an increase in overpotential with a product selectivity favoring H2evolution, consistent with a high‐overpotential pathway via the anionic [Mn−H]intermediate. Alternative aprotic Lewis base functional groups such as trifluoromethyl, morpholine and acetamide are shown to also be capable of intermediate manganese hydride generation. The tertiary amine substituent, 2‐morpholinophenyl, exhibits a desirable product distribution characteristic of syn‐gas (CO : H2=30 : 48) with an impressive turnover frequency, while the secondary amine group, 2‐acetamidophenyl, induces a notable shift in selectivity with a faradaic yield of 55 % for the formate (HCO2) product. In addition to their catalytic properties, cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC) studies are presented to probe pre‐catalyst electronic properties and the two‐electron reduction activation pathway.

     
    more » « less
  2. Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex. 
    more » « less
  3. Various valuable properties of azoarenes (“azo dyes”), including their vivid colors and their facile cis – trans photoisomerization, lead to their wide use in the chemical industry. As a result, ∼700 000 metric tons of azo dyes are produced each year. Most currently utilized synthetic methods towards azoarenes involve harsh reaction conditions and/or toxic reagents in stoichiometric amounts, which may affect selectivity and produce significant amounts of waste. An efficient alternative method towards this functional group includes transition metal catalyzed nitrene coupling. This method is generally more sustainable compared with most stoichiometric methods as it uses only catalytic amounts of co-reactants (metal catalysts), requires easily synthesizable organoazide precursors, and forms only dinitrogen as a by-product of catalysis. During the last decade, several catalytic systems were reported, and their reactivity was investigated. This perspective article will review these systems, focusing on various nitrene coupling mechanisms, and the substrate scope for each system. Particular attention will be devoted to the iron-alkoxide catalytic systems investigated in the PI's laboratory. The design and structural features of several generations of iron bis(alkoxide) complexes will be discussed, followed by the structure–activity studies of these catalysts in nitrene homo- and heterocoupling. 
    more » « less
  4. A new sterically bulky chelating bis(alkoxide) ligand 3,3′-([1,1′:4′,1′′-terphenyl]-2,2′′-diyl)bis(2,2,4,4-tetramethylpentan-3-ol), (H 2 [OO] tBu ), was prepared in a two-step process as the dichloromethane monosolvate, C 36 H 50 O 2 ·CH 2 Cl 2 . The first step is a Suzuki–Miyaura coupling reaction between 2-bromophenylboronic acid and 1,4-diiodobenzene. The resulting 2,2′′-dibromo-1,1′:4′,1′′-terphenyl was reacted with t BuLi and hexamethylacetone to obtain the desired product. The crystal structure of H 2 [OO] tBu revealed an anti conformation of the [CPh 2 (OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this anti – anti conformation, the attempts to synthesize first-row transition-metal complexes with H 2 [OO] tBu were not successful. 
    more » « less
  5. null (Ed.)
    Reaction of LiOC t Bu 2 Ph with TlPF 6 forms the dimeric Tl 2 (OC t Bu 2 Ph) 2 complex, a rare example of a homoleptic thallium alkoxide complex demonstrating formally two-coordinate metal centers. Characterization of Tl 2 (OC t Bu 2 Ph) 2 by 1 H and 13 C NMR spectroscopy and X-ray crystallography reveals the presence of two isomers differing by the mutual conformation of the alkoxide ligands, and by the planarity of the central Tl–O–Tl–O plane. Tl 2 (OC t Bu 2 Ph) 2 serves as a convenient precursor to the formation of old and new [M(OC t Bu 2 Ph) n ] complexes (M = Cr, Fe, Cu, Zn), including a rare example of T-shaped Zn(OC t Bu 2 Ph) 2 (THF) complex, which could not be previously synthesized using more conventional LiOR/HOR precursors. The reaction of [Ru(cymene)Cl 2 ] 2 with Tl 2 (OC t Bu 2 Ph) 2 results in the formation of a ruthenium( ii ) alkoxide complex. For ruthenium, the initial coordination of the alkoxide triggers C–H activation at the ortho -H of [OC t Bu 2 Ph] which results in its bidentate coordination. In addition to Tl 2 (OC t Bu 2 Ph) 2 , related Tl 2 (OC t Bu 2 (3,5-Me 2 C 6 H 3 )) 2 was also synthesized, characterized, and shown to exhibit similar reactivity with iron and ruthenium precursors. Synthetic, structural, and spectroscopic characterizations are presented. 
    more » « less
  6. null (Ed.)
    One electron reduction of formally Co IV (OR) 2 (CPh 2 ) forms the [Co II (OR) 2 (CPh 2 )] − anion. Whereas low-spin Co(OR) 2 (CPh 2 ) demonstrated significant alkylidene character, the high-spin [Co(OR) 2 (CPh 2 )] − anion features a rare Co( ii )–carbene radical. Treatment of [Co(OR) 2 (CPh 2 )][CoCp* 2 ] with xylyl isocyanide triggers formation of two new C–C bonds, and is likely mediated by nucleophilic attack of deprotonated CoCp* 2 + on a transient ketenimine. 
    more » « less